Chapter 12
Object-Oriented Programming:

Polymorphism
C++ How to Program, 9/e

©1992-2014 by Pearson
Education, Inc. All Rights
Reserved.

In this chapter you'll learn:
= How polymorphism makes programming more convenient and systems more extensible.

= The distinction between abstract and concrete classes and how to create abstract
classes.

= To use runtime type information (RTTI).
s How C++ implements vi rtual functions and dynamic binding.

= How virtual destructors ensure that all appropriate destructors run on an object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.1 Introduction
12.2 Introduction to Polymorphism: Polymorphic Video Game

12.3 Relationships Among Objects in an Inheritance Hierarchy
12.3.1 Invoking Base-Class Functions from Derived-Class Objects
12.3.2 Aiming Derived-Class Pointers at Base-Class Objects
12.3.3 Derived-Class Member-Function Calls via Base-Class Pointers
12.3.4 Virtual Functions and Virtual Destructors

12.4 Type Fields and switch Statements

12.5 Abstract Classes and Pure virtual Functions

12.6 Case Study: Payroll System Using Polymorphism
12.6.1 Creating Abstract Base Class EmpTloyee
12.6.2 Creating Concrete Derived Class SalariedEmployee
12.6.3 Creating Concrete Derived Class CommissionEmployee

12.6.4 Creating Indirect Concrete Derived Class BasePTusCommission-Employee
12.6.5 Demonstrating Polymorphic Processing

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding
“Under the Hood”

12.8 Case Study: Payroll System Using Polymorphism and Runtime Type
Information with Downcasting, dynamic_cast, typeid and type_info

12.9 Wrap-Up

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.1 Introduction

We now continue our study of OOP by explaining and
demonstrating polymorphism with inheritance hierarchies.

Polymorphism enables us to “program in the general’ rather than
“program in the specific.”
— Enables us to write programs that process objects of classes that are

part of the same class hierarchy as if they were all objects of the
hierarchy’s base class.

Polymorphism works off base-class pointer handles and base-
class reference handles, but not off name handles.

Relying on each object to know how to “do the right thing” in
response to the same function call is the key concept of
polymorphism.

The same message sent to a variety of objects has “many forms”
of results—hence the term polymorphism.

12.1 Introduction (cont.)

* With polymorphism, we can design and
Implement systems that are easily extensible.

— New classes can be added with little or no
modification to the general portions of the
program, as long as the new classes are part of the
Inheritance hierarchy that the program processes
generally.

— The only parts of a program that must be altered to
accommodate new classes are those that require
direct knowledge of the new classes that you add
to the hierarchy:

12.2 Introduction to Polymorphism:
Polymorphic Video Game

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 12.1

Polymorphism enables you to deal in generalities and let
the execution-time environment concern itself with the
specifics. You can direct a variety of objects to behave in
manners appropriate to those objects without even
knowing their types—as long as those objects belong to
the same inheritance hierarchy and are being accessed
off a common base-class pointer or a common base-class
reference.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 12.2

Polymorphism promotes extensibility: Software written
to invoke polymorphic behavior is written independently
of the specific types of the objects to which messages are
sent. Thus, new types of objects that can respond to
existing messages can be incorporated into such a
system without modifying the base system. Only client
code that instantiates new objects must be modified to
accommodate new types.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3 Relationships Among Objects in an
Inheritance Hierarchy

The next several sections present a series of examples that
demonstrate how base-class and derived-class pointers can be
aimed at base-class and derived-class objects, and how those
pointers can be used to invoke member functions that manipulate
those objects.

A key concept in these examples is to demonstrate that an object
of a derived class can be treated as an object of its base class.

Despite the fact that the derived-class objects are of different
types, the compiler allows this because each derived-class object
/s an object of its base class.

However, we cannot treat a base-class object as an object of any
of its derived classes.

The /s-arelationship applies only from a derived class to its
direct and indirect base classes.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

 The example in Fig. 12.1 reuses the final versions of classes
CommissionEmployee and

BasePlusCommissionEmployee from Section 11.3.5.

* The first two are natural and straightforward—we aim a
base-class pointer at a base-class object and invoke base-
class functionality, and we aim a derived-class pointer at a
derived-class object and invoke derived-class functionality.

* Then, we demonstrate the relationship between derived
classes and base classes (i.e., the 7s-a relationship of
Inheritance) by aiming a base-class pointer at a derived-
class object and showing that the base-class functionality is
Indeed available in the derived-class object.

1 // Fig. 12.1: figl2_01.cpp
2 // Aiming base-class and derived-class pointers at base-class
3 // and derived-class objects, respectively.
4 #include <iostream>
5 #include <iomanip>
6 #include
7 #include
8 using namespace std;
9
10 1int main()
11 {
12 // create base-class object
13 CommissionEmployee commissionEmployee(
14 , : : ,);
15
16 // create base-class pointer
17 CommissionEmployee *commissionEmployeePtr = nullptr;
18
19 // create derived-class object
20 BasePlusCommissionEmployee basePlusCommissionEmployee(
21 ’ ’ ’ H ’) ;
22
Fig. 12.1 | Assigning addresses of base-class and derived-class objects to base-

class and derived-class pointers. (Part | of 5.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

23 // create derived-class pointer

24 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = nullptr;
25

26 // set floating-point output formatting

27 cout << fixed << setprecision();

28

29 // output objects commissionEmployee and basePlusCommissionEmployee
30 cout << ;

31 commissionEmployee.print(); // invokes base-class print

32 cout << ;

33 basePlusCommissionEmployee.print(); // invokes derived-class print
34

35 // aim base-class pointer at base-class object and print

36 commissionEmployeePtr = &commissionEmployee; // perfectly natural

37 cout <<

38 << ;
39 commissionEmployeePtr->print(); // invokes base-class print

40

41 // aim derived-class pointer at derived-class object and print

42 basePlusCommissionEmployeePtr = &basePlusCommissionEmployee; // natural
43 cout <<

44 <<

45 << ;

46 basePTusCommissionEmployeePtr->print(); // invokes derived-class print

Fig. 12.1 | Assigning addresses of base-class and derived-class objects to base-
class and derived-class pointers. (Part 2 of 5.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

47

48 // aim base-class pointer at derived-class object and print
49 commissionEmployeePtr = &basePlusCommissionEmployee;

50 cout <<

51 <<

52 << ;

53 commissionEmployeePtr->print(); // invokes base-class print
54 cout << endl;

55 1} // end main

Fig. 12.1 | Assigning addresses of base-class and derived-class objects to base-
class and derived-class pointers. (Part 3 of 5.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Print base-class and derived-class objects:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to
base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

Calling print with derived-class pointer to
derived-class object invokes derived-class print function:

Fig. 12.1 | Assigning addresses of base-class and derived-class objects to base-
class and derived-class pointers. (Part 4 of 5.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

