
Chapter 12

Object-Oriented Programming:

Polymorphism
C++ How to Program, 9/e

©1992-2014 by Pearson
Education, Inc. All Rights

Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.1 Introduction

• We now continue our study of OOP by explaining and
demonstrating polymorphism with inheritance hierarchies.

• Polymorphism enables us to “program in the general” rather than
“program in the specific.”
– Enables us to write programs that process objects of classes that are

part of the same class hierarchy as if they were all objects of the
hierarchy’s base class.

• Polymorphism works off base-class pointer handles and base-
class reference handles, but not off name handles.

• Relying on each object to know how to “do the right thing” in
response to the same function call is the key concept of
polymorphism.

• The same message sent to a variety of objects has “many forms”
of results—hence the term polymorphism.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.1 Introduction (cont.)

• With polymorphism, we can design and

implement systems that are easily extensible.

– New classes can be added with little or no

modification to the general portions of the

program, as long as the new classes are part of the

inheritance hierarchy that the program processes

generally.

– The only parts of a program that must be altered to

accommodate new classes are those that require

direct knowledge of the new classes that you add

to the hierarchy. ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.2 Introduction to Polymorphism:

Polymorphic Video Game

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3 Relationships Among Objects in an

Inheritance Hierarchy

• The next several sections present a series of examples that
demonstrate how base-class and derived-class pointers can be
aimed at base-class and derived-class objects, and how those
pointers can be used to invoke member functions that manipulate
those objects.

• A key concept in these examples is to demonstrate that an object
of a derived class can be treated as an object of its base class.

• Despite the fact that the derived-class objects are of different
types, the compiler allows this because each derived-class object
is an object of its base class.

• However, we cannot treat a base-class object as an object of any
of its derived classes.

• The is-a relationship applies only from a derived class to its
direct and indirect base classes.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.1 Invoking Base-Class Functions from

Derived-Class Objects

• The example in Fig. 12.1 reuses the final versions of classes
CommissionEmployee and
BasePlusCommissionEmployee from Section 11.3.5.

• The first two are natural and straightforward—we aim a
base-class pointer at a base-class object and invoke base-
class functionality, and we aim a derived-class pointer at a
derived-class object and invoke derived-class functionality.

• Then, we demonstrate the relationship between derived
classes and base classes (i.e., the is-a relationship of
inheritance) by aiming a base-class pointer at a derived-
class object and showing that the base-class functionality is
indeed available in the derived-class object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

